140 research outputs found

    Correlates of Dual-Method Contraceptive Use: An Analysis of the National Survey of Family Growth (2006–2008)

    Get PDF
    Objective. To analyze a nationally representative sample of women for correlates of dual-contraceptive-method use. Materials and Methods. We conducted an analysis of the National Survey of Family Growth, 2006–2008, a cross-sectional survey of reproductive-aged women in the United States. Results. Dual method use was reported by 7.3% of the 5,178 women in the sample. Correlates of higher rates of dual-contraceptive-method use included age younger than 36 years and nonmarried marital status. Lower rates of dual method use were observed for women with less than a high-school education and women without consistent health insurance in the past year. Compared to women using oral contraceptives, use of the contraceptive injection or long-acting reversible contraception was associated with lower dual-method use. Conclusions. The overall rate of dual-method use in the USA is low. Future interventions to promote dual method use should target high-risk groups with modifiable risk factors

    Deletion of a 197-Amino-Acid Region in the N-Terminal Domain of Spike Protein Attenuates Porcine Epidemic Diarrhea Virus in Piglets

    Get PDF
    ABSTRACT We previously isolated a porcine epidemic diarrhea virus (PEDV) strain, PC177, by blind serial passaging of the intestinal contents of a diarrheic piglet in Vero cell culture. Compared with the highly virulent U.S. PEDV strain PC21A, the tissue culture-adapted PC177 (TC-PC177) contains a 197-amino-acid (aa) deletion in the N-terminal domain of the spike (S) protein. We orally inoculated neonatal, conventional suckling piglets with TC-PC177 or PC21A to compare their pathogenicities. Within 7 days postinoculation, TC-PC177 caused mild diarrhea and lower fecal viral RNA shedding, with no mortality, whereas PC21A caused severe clinical signs and 55% mortality. To investigate whether infection with TC-PC177 can induce cross-protection against challenge with a highly virulent PEDV strain, all the surviving piglets were challenged with PC21A at 3 weeks postinoculation. Compared with 100% protection in piglets initially inoculated with PC21A, 88% and 100% TC-PC177- and mock-inoculated piglets had diarrhea following challenge, respectively, indicating incomplete cross-protection. To investigate whether this 197-aa deletion was the determinant for the attenuation of TC-PC177, we generated a mutant (icPC22A-S1Δ197) bearing the 197-aa deletion from an infectious cDNA clone of the highly virulent PEDV PC22A strain (infectious clone PC22A, icPC22A). In neonatal gnotobiotic pigs, the icPC22A-S1Δ197 virus caused mild to moderate diarrhea, lower titers of viral shedding, and no mortality, whereas the icPC22A virus caused severe diarrhea and 100% mortality. Our data indicate that deletion of this 197-aa fragment in the spike protein can attenuate a highly virulent PEDV, but the virus may lose important epitopes for inducing robust protective immunity. IMPORTANCE The emerging, highly virulent PEDV strains have caused substantial economic losses worldwide. However, the virulence determinants are not established. In this study, we found that a 197-aa deletion in the N-terminal region of the S protein did not alter virus (TC-PC177) tissue tropism but reduced the virulence of the highly virulent PEDV strain PC22A in neonatal piglets. We also demonstrated that the primary infection with TC-PC177 failed to induce complete cross-protection against challenge by the highly virulent PEDV PC21A, suggesting that the 197-aa region may contain important epitopes for inducing protective immunity. Our results provide an insight into the role of this large deletion in virus propagation and pathogenicity. In addition, the reverse genetics platform of the PC22A strain was further optimized for the rescue of recombinant PEDV viruses in vitro . This breakthrough allows us to investigate other virulence determinants of PEDV strains and will provide knowledge leading to better control PEDV infections

    Oral Delivery of Bioencapsulated Proteins Across Blood–Brain and Blood–Retinal Barriers

    Get PDF
    Delivering neurotherapeutics to target brain-associated diseases is a major challenge. Therefore, we investigated oral delivery of green fluorescence protein (GFP) or myelin basic protein (MBP) fused with the transmucosal carrier cholera toxin B subunit (CTB), expressed in chloroplasts (bioencapsulated within plant cells) to the brain and retinae of triple transgenic Alzheimer\u27s disease (3×TgAD) mice, across the blood–brain barriers (BBB) and blood–retinal barriers (BRB). Human neuroblastoma cells internalized GFP when incubated with CTB-GFP but not with GFP alone. Oral delivery of CTB-MBP in healthy and 3×TgAD mice shows increased MBP levels in different regions of the brain, crossing intact BBB. Thioflavin S–stained amyloid plaque intensity was reduced up to 60% by CTB-MBP incubation with human AD and 3×TgAD mice brain sections ex vivo. Amyloid loads were reduced in vivo by 70% in hippocampus and cortex brain regions of 3×TgAD mice fed with bioencapsulated CTB-MBP, along with reduction in the ratio of insoluble amyloid β 42 (Aβ42) to soluble fractions. CTB-MBP oral delivery reduced Aβ42 accumulation in retinae and prevented loss of retinal ganglion cells in 3×TgAD mice. Lyophilization of leaves increased CTB-MBP concentration by 17-fold and stabilized it during long-term storage in capsules, facilitating low-cost oral delivery of therapeutic proteins across the BBB and BRB

    Commercial Bioinoculants Increase Root Length Colonization and Improve Petiole Nutrient Concentration of Field-grown Grapevines

    Get PDF
    Agricultural bioinoculants containing arbuscular mycorrhizal fungi represent a potential opportunity to reduce the dependence of grapevines (Vitis) on agrochemicals. This field study assessed the ability of four commercial bioinoculants to colonize grapevine roots and their effects on petiole nutrient concentration, berry composition, and root morphology of ‘Pinot noir’ (Vitis vinifera) grafted onto rootstock ‘Couderc 3309’ (Vitis riparia × Vitis rupestris) and ‘Riesling’ (V. vinifera) grafted onto ‘Couderc 3309’ and Selection Oppenheim four (Vitis berlandieri × V. riparia). Three bioinoculants increased root mycorrhizal colonization; however, regardless of the treatment, mycorrhizal fungal structures were enhanced. Grapevine petiole nutrient concentration was improved by bioinoculants. Root diameter, root length density, and specific root length increased with greater mycorrhizal root colonization. Using bioinoculants to reduce chemical fertilizers may be a good strategy to improve grapevine productivity and health in cool climates; however, the impact of mycorrhizal bioinoculants in the vineyard may differ among scion–rootstocks, edaphoclimatic conditions, and vineyard soil microbiomes

    PRIMA-1Met suppresses colorectal cancer independent of p53 by targeting MEK

    Get PDF
    This work was supported by Grant No. 81201779 (Hua Xiong) from the National Natural Science Youth Foundation; Grant No. 81502118 (Yanmei Zou) from the National Natural Science Youth Foundation; Grant No. 2014CFB250 (Yanmei Zou) from the Natural Science Foundation of Hubei Province; Grant No. 81372434 (Huihua Xiong) from the National Natural Science Foundation.PRIMA-1Met is the methylated PRIMA-1 (p53 reactivation and induction of massive apoptosis) and could restore tumor suppressor function of mutant p53 and induce p53 dependent apoptosis in cancer cells harboring mutant p53. However, p53 independent activity of PRIMA-1Met remains elusive. Here we reported that PRIMA-1Met attenuated colorectal cancer cell growth irrespective of p53 status. Kinase profiling revealed that mitogen-activated or extracellular signal-related protein kinase (MEK) might be a potential target of PRIMA-1Met. Pull-down binding and ATP competitive assay showed that PRIMA-1Met directly bound MEK in vitro and in cells. Furthermore, the direct binding sites of PRIMA-1Met were explored by using a computational docking model. Treatment of colorectal cancer cells with PRIMA-1Met inhibited p53-independent phosphorylation of MEK, which in turn impaired anchorage-independent cell growth in vitro. Moreover, PRIMA-1Met suppressed colorectal cancer growth in xenograft mouse model by inhibiting MEK1 activity. Taken together, our findings demonstrate a novel p53-independent activity of PRIMA-1Met to inhibit MEK and suppress colorectal cancer growth.Publisher PDFPeer reviewe

    Ab-Externo AAV-Mediated Gene Delivery to the Suprachoroidal Space Using a 250 Micron Flexible Microcatheter

    Get PDF
    The current method of delivering gene replacement to the posterior segment of the eye involves a three-port pars plana vitrectomy followed by injection of the agent through a 37-gauge cannula, which is potentially wrought with retinal complications. In this paper we investigate the safety and efficacy of delivering adeno-associated viral (AAV) vector to the suprachoroidal space using an ab externo approach that utilizes an illuminated microcatheter.6 New Zealand White rabbits and 2 Dutch Belted rabbits were used to evaluate the ab externo delivery method. sc-AAV5-smCBA-hGFP vector was delivered into the suprachoroidal space using an illuminated iTrackTM 250A microcatheter. Six weeks after surgery, the rabbits were sacrificed and their eyes evaluated for AAV transfection using immunofluorescent antibody staining of GFP.Immunostaining of sectioned and whole-mounted eyes demonstrated robust transfection in all treated eyes, with no fluorescence in untreated control eyes. Transfection occurred diffusely and involved both the choroid and the retina. No apparent adverse effects caused by either the viral vector or the procedure itself could be seen either clinically or histologically.The ab externo method of delivery using a microcatheter was successful in safely and effectively delivering a gene therapy agent to the suprachoroidal space. This method presents a less invasive alternative to the current method of virally vectored gene delivery

    Caenorhabditis elegans Genomic Response to Soil Bacteria Predicts Environment-Specific Genetic Effects on Life History Traits

    Get PDF
    With the post-genomic era came a dramatic increase in high-throughput technologies, of which transcriptional profiling by microarrays was one of the most popular. One application of this technology is to identify genes that are differentially expressed in response to different environmental conditions. These experiments are constructed under the assumption that the differentially expressed genes are functionally important in the environment where they are induced. However, whether differential expression is predictive of functional importance has yet to be tested. Here we have addressed this expectation by employing Caenorhabditis elegans as a model for the interaction of native soil nematode taxa and soil bacteria. Using transcriptional profiling, we identified candidate genes regulated in response to different bacteria isolated in association with grassland nematodes or from grassland soils. Many of the regulated candidate genes are predicted to affect metabolism and innate immunity suggesting similar genes could influence nematode community dynamics in natural systems. Using mutations that inactivate 21 of the identified genes, we showed that most contribute to lifespan and/or fitness in a given bacterial environment. Although these bacteria may not be natural food sources for C. elegans, we show that changes in food source, as can occur in environmental disturbance, can have a large effect on gene expression, with important consequences for fitness. Moreover, we used regression analysis to demonstrate that for many genes the degree of differential gene expression between two bacterial environments predicted the magnitude of the effect of the loss of gene function on life history traits in those environments

    Impact of Detectable Monoclonal Protein at Diagnosis on Outcomes in Marginal Zone Lymphoma: A Multicenter Cohort Study

    Get PDF
    Given the paucity of data surrounding the prognostic relevance of monoclonal paraprotein (M-protein) in marginal zone lymphoma (MZL), we sought to evaluate the impact of detecting M-protein at diagnosis on outcomes in patients with MZL in a large retrospective cohort. The study included 547 patients receiving first-line therapy for MZL. M-protein was detectable at diagnosis in 173 (32%) patients. There was no significant difference in the time from diagnosis to initiation of any therapy (systemic and local) between the M-protein and no M-protein groups. Patients with M-protein at diagnosis had significantly inferior progression-free survival (PFS) compared with those without M-protein at diagnosis. After adjusting for factors associated with inferior PFS in univariate models, presence of M-protein remained significantly associated with inferior PFS (hazard ratio, 1.74; 95% confidence interval, 1.20-2.54; P = .004). We observed no significant difference in the PFS based on the type or quantity of M-protein at diagnosis. There were differential outcomes in PFS based on the first-line therapy in patients with M-protein at diagnosis, in that, those receiving immunochemotherapy had better outcomes compared with those receiving rituximab monotherapy. The cumulative incidence of relapse in stage 1 disease among the recipients of local therapy was higher in the presence of M-protein; however, this did not reach statistical significance. We found that M-protein at diagnosis was associated with a higher risk of histologic transformation. Because the PFS difference related to presence of M-protein was not observed in patients receiving bendamustine and rituximab, immunochemotherapy may be a preferred approach over rituximab monotherapy in this group and needs to be explored further
    corecore